Microwave a.c. conductivity of domain walls in ferroelectric thin films
نویسندگان
چکیده
Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale.
منابع مشابه
Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO<sub>3</sub> thin films
Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric...
متن کاملControlled creation and displacement of charged domain walls in ferroelectric thin films
Charged domain walls in ferroelectric materials are of high interest due to their potential use in nanoelectronic devices. While previous approaches have utilized complex scanning probe techniques or frustrative poling here we show the creation of charged domain walls in ferroelectric thin films during simple polarization switching using either a conductive probe tip or patterned top electrodes...
متن کاملFerroelectric domain structures of epitaxial „001... BiFeO3 thin films
Ferroelectric domain structures of epitaxial BiFeO3 thin films on miscut 001 SrTiO3 substrates have been studied by transmission electron microscopy. BiFeO3 on 0.8° miscut substrates are composed of both 109° and 71° domains; in contrast, only 71° stripe domains are observed in BiFeO3 on 4° miscut 001 SrTiO3 substrates. The domain width in BiFeO3 on 4° miscut substrates increases as film thickn...
متن کاملOrientation Dependence of the Piezoelectric Properties of Epitaxial Ferroelectric Thin Films
Title of Document: ORIENTATION DEPENDENCE OF THE PIEZOELECTRIC PROPERTIES OF EPITAXIAL FERROELECTRIC THIN FILMS Jun Ouyang, Doctor of Philosophy, 2005 Directed By: Professor Alexander. L. Roytburd Dept. of Materials Science and Engineering There are both intrinsic piezoelectric response and extrinsic piezoelectric response in ferroelectric materials. The intrinsic piezoelectric response is due ...
متن کاملThe Influence of Conductive Nanodomain Walls on the Photovoltaic Effect of BiFeO3 Thin Films
Two Planar Pt electrodes with an inter-electrode distance of about 100 nm were fabricated at the surface of BiFeO3 thin films, which allow the manipulation of ferroelectric domain switching at nanoscale. This electrode configuration was pursued to study conductive domain-wall influence on the photovoltaic current in BiFeO3 thin films. Modulations of short-circuit photovoltaic current and hyster...
متن کامل